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LETTER TO THE EDITOR 

Effective field of a dipole in a lattice of polarisable spheres 

Piotr Wielopolskit 
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 
Warsaw, Poland 

Received 29 April 1981 

Abstract. The effective electric field in a simple cubic lattice (of spacing L) with polarisable 
sphere of polarisability a at each vertex, due to a permanent dipole pl of polarisability a1 at 
one vertex deep within the lattice is evaluated. The dielectric constant of the lattice is: 
&(a, al, L ) = ( l  -4wa/3L3)(1 +8wa/3L3)-2(4wa/3L3)*(al/a - 1). 

The unbalanced source of the electric field within the lattice of polarisable particles 
produces a collective response of the system. Part of this response is due to the 
N-particle induced-dipole-induced-dipole interaction. In earlier papers (Wielopolski 
1973a, b, Stecki and Wielopolski 1973) we have developed the formalism for calculat- 
ing the polarisability contribution to the energy of the various point defects in crystal 
lattices and various examples were studied. Alder and Pollock (1977) calculated 
numerically the electric field due to a permanent dipole in a medium of 108 polarisable 
atoms by molecular dynamics. Smith (1980) has calculated the dielectric constant of the 
lattice of polarisable particles with a permanent dipole as a source of the electric field by 
a method similar to that reported in Wielopolski (1973a, b) and Stecki and Wielopolski 
(1973). 

In this letter we point out the effect of the polarisability of the permanent dipole 
itself upon the electric field in the lattice. Alder and Pollock (1977) put the polarisabil- 
ity of the permanent dipole equal to zero, whereas in Smith (1980) it was taken to be 
equal to that of the surrounding particles; this effect for any polarisability is calculated 
below. 

Consider the simple cubic lattice, of spacing L, with atoms of polarisability QI at the 
vertices. Deep within the lattice on the vertex labelled 1 the permanent dipole p l ,  of 
polarisability QI 1,  is situated. The response of the system to the electric field is purely via 
polarisation. The effective electric field at particle i is expressed in the following way: 

where Tii = -VjVilrijl'-l is the dipole-dipole tensor, Tii 0, and pi  = aiEi is the induced 
dipole moment. 

The first part of equation (1) represents the direct contribution from the permanent 
dipole, the second part is the contribution from all induced dipoles. The solution of 
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equation (1) is of the following form: 

Expression (2) is easy to calculate in terms of the finite Fourier transform (Wielopolski 
1973a, Bellemans and Stecki 1961). Making use of the integral representation of the 
Kronecker delta: 

aij = dk exp[2.rrik(ni - ni)]  I, (3) 

1 1 3  where r is the cube ( - 5 ,  2) in the case of the simple cubic lattice and ni, ni are the 
non-dimensional lattice vectors, we obtain 

Ei = - dk exp[ - 2 ~ i k ( n 1 -  ni)][U + T ( ~ ) C Y ] - ~ T ( ~ ) C L ~  ( 4 )  I, 
where ~ ( k )  is defined as follows: 

~ ( k )  = x Ti l  exp[2.rrik(n1 -n i l ] .  
L 

Expression ( 5 )  can be evaluated numerically with the aid of the method described by 
Nijboer and De Wette (1957) for a number of k values; then, the numerical integration 
of expression ( 4 )  gives the electric field in an arbitrary vertex of the lattice. 

In this letter we approximate ~ ( k )  by its asymptotic form (Wielopolski 1973b): 

limT(k)= - 4 ~ - 3 7 )  4T kk 
k+O 3L k *  

The use of this form of the tensor ~ ( k )  is equivalent to a continuum approximation ; the 
results are also correct for the electric field in the lattice far away from the vertex 1. 

Expression ( 4 )  is correct provided that all polarisabilities are equal to each other. 
Then (see also Wielopolski 1973b) 

where 

C Y )  = a/L3 T 1 ( k )  =L3T(k) p = 4TCY/L3 

and 

In the case when CY #  CY^ the function Aij may be expressed in terms of the combinations 
of A:, (Wielopolski 1973b and Stecki and Wielopolski 1973) in the following form: 

where w = (a1 - & ) / a .  



Letter to the Editor 

Introduction of this expression into equation (2) leads to 

AiTjlpl- (U&l -AYi) U+(U-AYl)w w j AYjTjlPl) 

Making use of equations (7) and (8) we obtain 

l + P  a 
(1 - p )( 1 + 2& - ( 1 - p ) ( 1 + 2p) Tij 

dk exp[ - 27rik(ni - ni)]ao(k, a) = 

and 
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The electric field at point i due to a dipole p1 in a continuum with dielectric constant E is 

Thus, in this case, for long-range interactions the lattice can be regarded as a continuum 
medium with dielectric constant 

&(a,  L) = ( 1  -4*a/3L3)(1 + ~ I T c x / ~ L ~ ) - ~ ( ~ T ~ x / ~ L ~ ) ~ w .  (13) 

The expansion of expression (12) in powers of a/L3 leads to an agreement with the 
results of Alder and Pollock (1977) and Smith (1980) 

Ei = -(1 -4*(r/3L3)TiiP1+O(a2). (14) 

The dependence on the polarisability cy1 of the permanent dipole appears in higher- 
order terms. 

For the reaction field of the dipole p1 we obtain 

P1 
2P 

(1 - P)(1+ 2p) - 2p2w E1 = a-' 

or after the expansion in powers of a/L3 

E1 = (4'rr/3)(8rap1/3L6)(1 -4*a/3L3) + O(a3).  (16) 

This result differs in the factor ( 4 ~ / 3 )  from the results of the continuum theory 
(Frohlich 1949) and from the results of Alder and Pollock (1977), which in this notation 
is 

E1 = (8*ffP1/3L6)(1 - ~ T ~ / ~ L ~ ) + O ( C U ~ ) .  

I thank Professor J Stecki for several useful discussions. 
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